CS 410/510: Advanced
Programming

Lecture 7: Hamming, Closures, Laziness

Mark P Jones
Portland State University

The Hamming Set:

hamming ={1}
U{2*x|xehamming }
U{3*x| xehamming }
U{5*x|xehamming }

hamming={1, 2, 3,4,5,6,8,9, 10,
12, 15, 16, 18, 20, 24, ... }

The Hamming Sequence:

hamming = 1 :
(merge [2 * x | x <- hamming]
(merge [3 * x | X <- hamming]
[5* x| x <- hamming]))

Main> hamming

[1,2,3,4,5,6,8,9, 10, 12, 15, 16, 18,
20, 24, ... "C{Interrupted!}

Main>

The Hamming Sequence:

hamming = 1 :
(merge (map (2*) hamming)
(merge (map (3*) hamming)
(map (5*) hamming)))

Main> hamming
[1,2,3,4,5,6,8,9, 10, 12, 15, 16, 18,
20, 24, ... “C{Interrupted!}

Main>
How does this work?

“Infinite” Lists in Haskell:
How do examples like the following work?

Main> [1..]
[1,2,3,4,5,6,7,8,9,10,11 C{Interrupted'}

Main> iterate (10%*) 1
[1,10,100,1000,10000,100000,1000000~C{Interrupted!}

Main> fibs where fibs = 0 : 1 : [x+y | (X,y) <- zip fibs (tail fibs)]
[0,1,1,2,3,5,8,13,21,34,55,89,144,233, ~C{Interrupted!}

Main>

Closures, Delays, Thunks ...

@ Haskell Expressions are treated as:
= Thunks
= Closures
= Delayed Computations
= Suspensions

@ Expressions are evaluated:
n Lazily
= On demand
= By need

[1..]

The list [1..] is syntactic sugar for the
expression enumFrom 1, where:

enumFrom n = n : enumFrom (n+1)

enumFrom n

Code: instructions on Data: inputs that are
how to produce the needed to produce the
next element next element

i

Closure/Thunk ;

[n..m]

The list [n..m] is syntactic sugar for the
expression enumFromTo n m, where:

enumFromTo n m
= if n<=m then n : enumFromTo (n+1) m
else []

enumFromTo \ n,m \

Code: instructions on Data: inputs that are
how to produce the needed to produce the
next element next element

i

Closure/Thunk 8

sum [1..10]

sum xs = sum’ 0 xs
where sum’'n[]=n
sum’ n (x:xs) = sum’ (n+Xx) xs

sum [1..10]

= sum’ 0 [1..10] t :=_0; n:=1; m:=10;

= sum’ 1 [2..10] while (n<=m) {

— sum’ 3 [3..10] ti=t+n;

— sum’ 6 [4..10] , n:=n+l; @

= sum’ 55 [11..10] sum’t [n..m]
=55

Closures in Smalltalk:

@ Blocks provide a similar mechanism:

m [i:=1i+ 1] describes a computation, but
doesn't run it (yet)

= aBlock value forces

@ Essential to make control structures work:
= aBool ifTrue: [...] ifFalse: [...]

@ A bigger example:

= BlockClosure>>>doWhileFalse: conditionBlock

= |result|
= [result := self value. conditionBlock value] whileFalse.
=/ result 10

[1..]

In Smalltalk:
@ A class EnumFrom, instance variable head

@ A class method: EnumFrom with: head

@ Accessor methods:
EnumFrom>>> head
A head

EnumFrom>>> tail
~ EnumFrom with: (head+1)

11

map (mult*)

In Smalltalk:
@ A class MultiplyBy, instance variables mult, aList

@ A method: aList multiplyBy: mult
(Which class should be home to this code?)

@ Accessor methods:
EnumFrom>>> head
A alist head * mult

EnumFrom>>> tail
A alist tail multiplyBy: mult

12

The Hamming Sequence:
v

3
Initialization V

2 13

The Hamming Sequence:

v
el [T TTTITT -

d

2

Get

2 14

The Hamming Sequence:
v

el [T TTTITT -
T

Advance

3 15

The Hamming Sequence:
v

fefs[[T [T T~
T

Get

3 16

The Hamming Sequence:
v

fefs[[T [T T TTT]-
T

Advance V

4 17

The Hamming Sequence:
v

fefsfaf T[T T J-
T

Get

4 18

The Hamming Sequence:
v

fefafaf T[T T J-

T T

Advance V

5 19

The Hamming Sequence:

[efefafafs] [[T[]]]-

T T

d

6

Get

5 20

The Hamming Sequence:

fefafafs] [T T[]]]-

Advance V

6 21

The Hamming Sequence:
v

[1foafafsle] [[[[]]-

d

6

Get

6 22

The Hamming Sequence:
v

[1feafafsle] [[[[]]-

£l

8
Advance V
etc...

8 23

Lists and Streams:

class List { interface Stream {
int head; int get();
List tail; void advance();
List(int head) { }

this.head = head;
this.tail = null;
b
b

24

Multiplier Streams:

class MultStream implements Stream {
private int mult;
private List elems;
MultStream(int mult, List elems) {
this.mult = mult;
this.elems = elems;

}

public int get() { return mult * elems.head; }
public void advance() { elems = elems.tail; }

}

25

Merge Streams:

class MergeStream implements Stream {
private Stream left, right;
MergeStream(Stream left, Stream right) {
this.left = left;
this.right = right;
b

public int get() {
int | = left.get();
int r = right.get();
return (I<=r)?1:r;

}

26

Merge Streams (advance):

public void advance() {
int | = left.get();
int r = right.get();

Main Loop:

class Hamming {
public static void main(String[] args) {
List ham = new List(1);

if (1 ==r){ Stream s = new MergeStream(new MultStream(2, ham),
left.ad . new MergeStream(new MultStream(3, ham),
? -advance(); new MultStream(5, ham)));
right.advance(); for (;;) {
yelseif (I <r){ System.out.print(ham.head + ", ");
left.advance(); int next = s.get();
}else { ham = ham.tail = new List(next);
right.advance(); s.advance();
) b
b
27 } 28
Observations: YAHS: (yet another Hamming solution)

@ Hamming produces elements faster than
the multiply/merge streams consume them

@ We will never attempt to read uninitialized
values

@ The blue pointers are always behind the
red pointer

@ But the distance between the pointers will
grow arbitrarily large ... this can be
considered a space leak

29

factorOut 2 Int-> Int
factorOut n m
| r== = factorOut n q

| otherwise = m
where (q, r) = divMod m n

inHamming :: Int -> Bool
inHamming = (1==
. factorOut 2
. factorOut 3
. factorOut 5

30

Summary:

@ Programming with closures feels very natural in
Haskell
= Built-in support for lazy evaluation
» Closure = function + arguments
= Recursion

@ But we can program with closures in other
languages too!
= One view of objects is as generalized closures:
Instance variables = Data
Methods = Multiple, parameterized Code entry points

@ A powerful programming technique (not just for
infinite lists)!
31

concat:

@ concat :: [[a]] -> [a]
@ concat [[1,2], [3,4,5], [6]]
= [1I2I3I4I5I6]

@ Laws:
= filter p . concat = concat . map (filter p)
= map f . concat = concat . map (map f)
= concat . concat = concat . map concat

32

List Comprehensions:

General form:
= [expression | qualifiers]

where qualifiers are either:
= Generators: pat <- expr; or
= Guards: expr; or
= Local definitions: let defns

Works like a kind of generalized “for loop”

33

Examples:

[x*x | x <-[1..6]]
=[1,4,9, 16, 25, 36]

[x| x<-[1..27], 28 'mod” x == 0]
=[1,2,4,7,14]

n <-[1..5], m <-[1..n]]

[m]
= [1I 112I 11213I 1I213I4I 112I3I415]

34

Applications:

9 Some “old friends”:

map f xs =[fx|Xx<-xs]
filter p xs =[Xx]|x<-xs,px]
concat xss =[x| Xs <- XSS, X <- X5]

@ Can you define take, head, or (++) using a
comprehension?

35

Laws of Comprehensions:

[X|x<-xs] =xs
[e|x<-xs] =map(\x->e)xs
[e]| True] =[e]

[e | False] =[]

[e|gs;,9s,] =concat[[e]gs,]|gs;]

36

Example:

[(le) | X <- [112]I y <- [112]]

= concat
[LOoy) 1y <-[1,2]] | x <-[1,2]]

= concat
[map (\y -> (x,y)) [1,2] | x <-[1,2]]

= concat
(map (\x ->
map (\y -> (x,y)) [1,2]) [1,2])

37

